MATH 1150	Angles	Name:	
Precalculus			April 4, 2019

Purpose: In this activity, you will explore angles in both radians and degrees using a physical model.

- 1. Fold the circle in half both ways to find the center and the coordinate axes.
- 2. On the provided circle, draw a radius from the center to the right. Label this radius "1". Any circle of radius 1 unit is called the *unit circle*.
- 3. Lay a pipe cleaner on top of the radius and mark off length of radius. Cut the pipe cleaner so that its length is the same as the radius.
- 4. Now, place one end of the pipe cleaner at the intersection of radius and circle and lay it counterclockwise along the circumference. Mark where the other end ends. Draw a line from this mark to the center of the circle.
- 5. In degrees, about how big is this angle? (This angle was found by moving one radius along the circumference so we call it 1 *radian*.)

6. About how many times does the pipe cleaner fit around the circumference?

7. How does the previous answer compare with a formula you know and love?

8. There are 2π radians in a circle and there are 360° in a circle. How many degrees are in 1 radian? How does this compare to your answer in Question 5?

9. There are 2π radians in a circle and there are 360° in a circle. How many degrees are in x radians?

10. How would you generally convert between radians and degrees?

- 11. For each of the angle measures below, mark them on your circle and then convert to the other type of angle measure.
 - (a) 0°
 - (b) $\frac{\pi}{4}$ radians
 - (c) $100\pi^{\circ}$ (You may want to covert first)
 - (d) $\frac{\pi}{2}$ radians

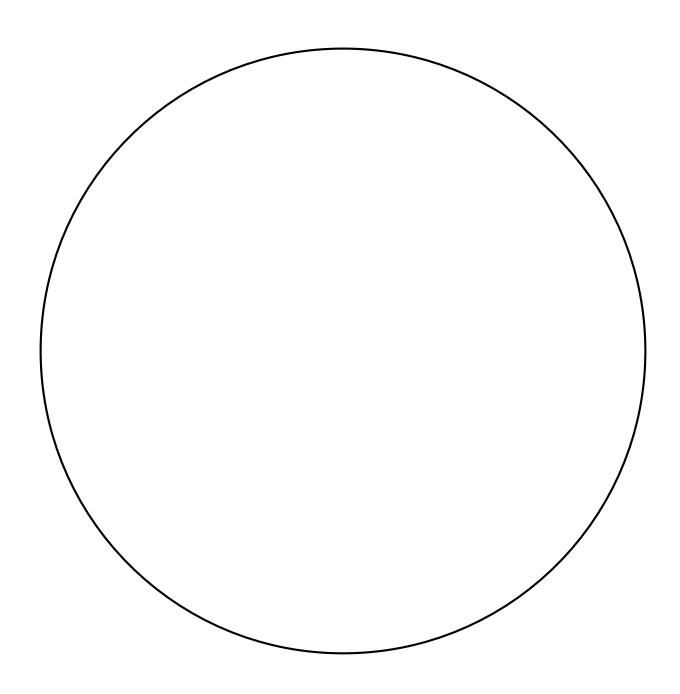
- 12. Suppose you want to know the arc length of a part of a circle of radius r given by some angle measured in radians. (We call this the arc length subtended by an angle.)
 - (a) What is the arc length corresponding to π radians? Can you use your model to confirm?

(b) What is the arc length corresponding to $\frac{\pi}{4}$ radians? Can you use your model to confirm?

(c) Make a conjecture about how to find the arc length given by an angle measure of θ radians.

(d) Take some notes here from the class discussion.

(e) What is the arc length of a circle of radius r subtended by θ radians?


- 13. Suppose you want to know the area of a part of a circle of radius r given by some angle measured in radians. (We call this the area of the sector of circle subtended by an angle.)
 - (a) What is the area of the sector corresponding to π radians?

(b) What is the area of the sector corresponding to $\frac{\pi}{4}$ radians?

(c) Make a conjecture about how to find the area of the sector given by an angle measure of θ radians.

(d) Take some notes here from the class discussion.

(e) What is the area of the sector of a circle of radius r subtended by θ radians?

